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ABSTRACT

Abductive reasoning is inference to the most plausible explanation. For example,
if Jenny finds her house in a mess when she returns from work, and remembers
that she left a window open, she can hypothesize that a thief broke into her house
and caused the mess, as the most plausible explanation. While abduction has
long been considered to be at the core of how people interpret and read between
the lines in natural language (Hobbs et al., 1988), there has been relatively little
research in support of abductive natural language inference and generation.
We present the first study that investigates the viability of language-based abduc-
tive reasoning. We introduce a challenge dataset, ART, that consists of over 20k
commonsense narrative contexts and 200k explanations. Based on this dataset, we
conceptualize two new tasks – (i) Abductive NLI: a multiple-choice question an-
swering task for choosing the more likely explanation, and (ii) Abductive NLG: a
conditional generation task for explaining given observations in natural language.
On Abductive NLI, the best model achieves 68.9% accuracy, well below human
performance of 91.4%. On Abductive NLG, the current best language generators
struggle even more, as they lack reasoning capabilities that are trivial for humans.
Our analysis leads to new insights into the types of reasoning that deep pre-trained
language models fail to perform—despite their strong performance on the related
but more narrowly defined task of entailment NLI—pointing to interesting av-
enues for future research.

1 INTRODUCTION

The brain is an abduction machine, continuously trying to prove abductively that the ob-
servables in its environment constitute a coherent situation.

– Jerry Hobbs, ACL 2013 Lifetime Achievement Award1

Abductive reasoning is inference to the most plausible explanation for incomplete observations
(Peirce, 1965a). Figure 1 illustrates an example. Given the incomplete observations about the world
that O1: “Jenny cleaned her house and went to work, leaving the window just a crack open.” and
sometime later O2: “When Jenny returned home, she saw her house was a mess.”, we can hypothe-
size different potential explanations and reason about which is the most likely. We can readily rule
out H3 since it fails to justify the observation O2. While H1 and H2 are both plausible, the most
likely explanation based on commonsense is H1 as H2 is somewhat implausible given O1.

One crucial observation Peirce makes about abductive reasoning is that abduction is “the only logical
operation which introduces any new ideas”, which contrasts with other types of inference such as
entailment, that focuses on inferring only such information that is already provided in the premise.

∗Work done while at AI2
1The full transcript of his award speech is available at https://www.mitpressjournals.org/

doi/full/10.1162/COLI_a_00171
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A thief broke into the house by 
pulling open the window.

The bird got stuck inside 
the house, flew around 
while trying to escape, 

and made a mess.

O1

O2

At work, she opened her 
window and the wind blew her 

papers everywhere.

H2 H3

Jenny left an insecure 
opening  to her house.

Fails to Justify to O2.  
Although wind caused a mess, the 

event happened at Jenny’s 
workplace.

The thief got into the house 
through the window and rifled 
through Jenny’s things, which 

made a mess.

When Jenny returned home she saw that her house was a mess!

Jenny cleaned her house and went to work, leaving the window just a crack open.

It was a breezy day and a large 
bird flew into the house.

tn

t0

ti

H1

Likely to follow O1.

?
Somewhat Unlikely.  

If the window was just a crack open, 
a large bird is unlikely to get in?

Figure 1: Example of Abductive Reasoning. Given observations O1 and O2, the αNLI task is to
select the most plausible explanatory hypothesis. Since the number of hypotheses is massive in any
given situation, we make a simplifying assumption in our ART dataset to only choose between a pair
of explanations.

Abductive reasoning has long been considered to be at the core of understanding narratives (Hobbs
et al., 1988), reading between the lines (Norvig, 1987; Charniak & Shimony, 1990), reasoning about
everyday situations (Peirce, 1965b; Andersen, 1973), and counterfactual reasoning (Pearl, 2002;
Pearl & Mackenzie, 2018). Despite the broad recognition of its importance, however, the study of
abductive reasoning in narrative text has very rarely appeared in the NLP literature, in large part
because most previous work on abductive reasoning has focused on formal logic, which has proven
to be too rigid to generalize to the full complexity of natural language.

In this paper, we present the first study to investigate the viability of language-based abductive
reasoning. This shift from logic-based to language-based reasoning draws inspirations from a sig-
nificant body of work on language-based entailment (Bowman et al., 2015; Williams et al., 2018b),
language-based logic (Lakoff, 1970; MacCartney & Manning, 2007), and language-based common-
sense reasoning (Mostafazadeh et al., 2016; Zellers et al., 2018). In particular, we investigate the use
of natural language as the representation medium, and probe deep neural models on language-based
abductive reasoning.

More concretely, we propose Abductive Natural Language Inference (αNLI) and Abductive Natural
Language Generation (αNLG) as two novel reasoning tasks in narrative contexts.2 We formulate
αNLI as a multiple-choice task to support easy and reliable automatic evaluation: given a context,
the task is to choose the more likely explanation from a given pair of hypotheses choices. We
also introduce a new challenge dataset, ART, that consists of 20K narratives accompanied by over
200K explanatory hypothesis.34 We then establish comprehensive baseline performance based on
state-of-the-art NLI and language models. The best baseline for αNLI based on BERT achieves
68.9% accuracy, with a considerable gap compared to human performance of 91.4%(§5.2). The
best generative model, based on GPT2, performs well below human performance on the αNLG task
(§5.2). Our analysis leads to insights into the types of reasoning that deep pre-trained language
models fail to perform — despite their strong performance on the closely related but different task
of entailment NLI — pointing to future research directions.

2 TASK DEFINITION

Abductive Natural Language Inference We formulate αNLI as multiple choice problems con-
sisting of a pair of observations as context and a pair of hypothesis choices. Each instance in ART is
defined as follows:

• O1: The observation at time t1.

2αNLI and αNLG are pronounced as alpha-NLI and alpha-NLG, respectively
3ART: Abductive Reasoning in narrative Text.
4Data available to download at http://abductivecommonsense.xyz
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• O2: The observation at time t2 > t1.
• h+: A plausible hypothesis that explains the two observations O1 and O2.
• h−: An implausible (or less plausible) hypothesis for observations O1 and O2.

Given the observations and a pair of hypotheses, the αNLI task is to select the most plausible expla-
nation (hypothesis).

Abductive Natural Language Generation αNLG is the task of generating a valid hypothesis h+

given the two observations O1 and O2. Formally, the task requires to maximize P (h+|O1, O2).

3 MODELS FOR ABDUCTIVE COMMONSENSE REASONING

3.1 ABDUCTIVE NATURAL LANGUAGE INFERENCE

A Probabilistic Framework for αNLI: A distinct feature of the αNLI task is that it requires
jointly considering all available observations and their commonsense implications, to identify the
correct hypothesis. Formally, the αNLI task is to select the hypothesis h∗ that is most probable
given the observations.

h∗ = arg max
hi

P (H = hi|O1, O2) (1)

Rewriting the objective using Bayes Rule conditioned on O1, we have:

P (hi|O1, O2) ∝ P (O2|hi, O1)P (hi|O1) (2)

We formulate a set of probabilistic models for αNLI that make various independence assumptions
on Equation 2 – starting from a simple baseline that ignores the observations entirely, and building
up to a fully joint model. These models are depicted as Bayesian Networks in Figure 2.

H

a) Hypothesis-Only e) Fully Connectedd) Linear Chain

HO1 O2
O2

H
O1HO1 O2H

b) First Observation Only c) Second Observation Only

Figure 2: Illustration of the graphical models described in the probabilistic framework. The “Fully
Connected” model can, in theory, combine information from both available observations.

Hypothesis Only: Our simplest model makes the strong assumption that the hypothesis is entirely
independent of both observations, i.e. (H ⊥ O1, O2), in which case we simply aim to maximize the
marginal P (H).

First (or Second) Observation Only: Our next two models make weaker assumptions: that the
hypothesis depends on only one of the first O1 or second O2 observation.

Linear Chain: Our next model uses both observations, but considers each observation’s influ-
ence on the hypothesis independently, i.e. it does not combine information across the observa-
tions. Formally, the model assumes that the three variables 〈O1, H,O2〉 form a linear Markov chain,
where the second observation is conditionally independent of the first, given the hypothesis (i.e.
(O1 ⊥ O2|H)). Under this assumption, we aim to maximize a somewhat simpler objective than
Equation 2:

h∗ = arg max
hi

P (O2|hi)P (hi|O1) where (O1 ⊥ O2|H) (3)

Fully Connected: Finally, our most sophisticated model jointly models all three random variables
as in Equation 2, and can in principle combine information across both observations to choose the
correct hypothesis.
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Figure 3: Overview of an αNLG model that integrates commonsense representations obtained from
COMeT (Bosselut et al., 2019) with GPT2. Each observation is input to the COMeT model to obtain
nine embeddings, each associated with one commonsense inference type.

To help illustrate the subtle distinction between how the Linear Chain and Fully Connected models
consider both observations, consider the following example. Let observation O1: “Carl went to
the store desperately searching for flour tortillas for a recipe.” and O2: “Carl left the store very
frustrated.”. Then consider two distinct hypotheses, an incorrect h1: “The cashier was rude” and the
correct h2: “The store had corn tortillas, but not flour ones.”. For this example, a Linear Chain model
could arrive at the wrong answer, because it reasons about the observations separately—taking O1

in isolation, both h1 and h2 seem plausible next events, albeit each a priori unlikely. And for O2

in isolation—i.e. in the absence of O1, as for a randomly drawn shopper—the h1 explanation of a
rude cashier seems a much more plausible explanation of Carl’s frustration than are the details of
the store’s tortilla selection. Combining these two separate factors leads the Linear Chain to select
h1 as the more plausible explanation. It is only by reasoning about Carl’s goal in O1 jointly with
his frustration in O2, as in the Fully Connected model, that we arrive at the correct answer h2 as the
more plausible explanation.

In our experiments, we encode the different independence assumptions in the best performing neural
network model. For the hypothesis-only and single observation models, we can enforce the inde-
pendencies by simply restricting the inputs of the model to only the relevant variables. On the other
hand, the Linear Chain model takes all three variables as input, but we restrict the form of the model
to enforce the conditional independence. Specifically, we learn a discriminative classifier:

PLinear Chain(h|O1, O2) ∝ eφ(O1,h)+φ′(h,O2)

where φ and φ′ are neural networks that produce scalar values.

3.2 ABDUCTIVE NATURAL LANGUAGE GENERATION

Given h+= {wh1 . . . whl }, O1={wo11 . . . wo1m } and O2={wo21 . . . wo2n } as sequences of tokens, the
αNLG task can be modeled as P (h+|O1, O2) =

∏
P (whi |wh<i, wo11 . . . wo1m , w

o2
1 . . . wo2n ) Option-

ally, the model can also be conditioned on background knowledge K. Parameterized models can
then be trained to minimize the negative log-likelihood over instances in ART:

L = −
N∑
i=1

logP (whi |wh<i, wo11 . . . wo1m , w
o2
1 . . . wo2n ,K) (4)

4 ART DATASET: ABDUCTIVE REASONING IN NARRATIVE TEXT

ART is the first large-scale benchmark dataset for studying abductive reasoning in narrative texts. It
consists of ∼20K narrative contexts (pairs of observations 〈O1, O2〉) with over 200K explanatory
hypotheses. Table 6 in the Appendix summarizes corpus-level statistics of the ART dataset.5 Figure
4 shows some illustrative examples from ART (dev split). The best model based on BERT fails to
correctly predict the first two dev examples.

5We will publicly release the ART dataset upon acceptance.
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The More Plausible Hypothesis is …Given These Partial Observations …

H-

O2

O1 

H+ 

Leslie went to the mall to look for a purse to 
match her new dress. Leslie found a beautiful dress after looking for hours.

She took it to the counter and paid right away, and 
went home happy.

Leslie found one that was perfect.

O1 It was a very hot summer day.
H-

O2
H+ 

He decided to run in the heat.

He felt much better! He drank a glass of ice cold water.

O2

O1 Chad loves Barry Bonds.
Chad got to meet Barry Bonds online, chatting.

Chad ensured that he took a picture to remember the 
event. Chad waited after a game and met Barry.

H-

H+ 

DEV

DEV

DEV

Figure 4: Examples from ART (dev split). The best model based on BERT fails to correctly predict
the first two examples.

Collecting Observations: The pairs O1, O2 in ART are drawn from the ROCStories dataset
(Mostafazadeh et al., 2016). ROCStories is a large collection of short, manually curated five-
sentence stories. It was designed to have a clear beginning and ending for each story, which naturally
map to the first (O1) and second (O2) observations in ART.

Collecting Hypotheses Options: We crowdsourced the plausible and implausible hypotheses op-
tions on Amazon Mechanical Turk (AMT) in two separate tasks6:

1. Plausible Hypothesis Options: We presented O1 and O2 as narrative context to crowdworkers
who were prompted to fill in “What happened in-between?” in natural language. The design of
the task motivates the use of abductive reasoning to hypothesize likely explanations for the two
given observations.

2. Implausible Hypothesis Options: In this task, we presented workers with observationsO1,O2 and
one plausible hypothesis option h+ ∈ H+ collected from the previous task. Crowdworkers were
instructed to make minimal edits (up to 5 words) to a given h+ to create implausible hypothesis
variations for each plausible hypothesis.

A significant challenge in creating datasets is avoiding annotation artifacts – unintentional patterns
in the data that leak information about the target label – that several recent studies (Gururangan
et al., 2018; Poliak et al., 2018; Tsuchiya, 2018) have reported on crowdsourced datasets . To tackle
this challenge, we collect multiple plausible and implausible hypotheses for each 〈O1, O2〉 pair (as
described above) and then apply an adversarial filtering algorithm to retain one challenging pair of
hypotheses that are hard to distinguish between. We describe our algorithm in detail in Appendix
A.5. While our final dataset uses BERT as the adversary, preliminary experiments that used GPT
as an adversary resulted in similar drops in performance of all models, including all BERT variants.
We compare the results of the two adversaries in Table 1.

5 EXPERIMENTS AND RESULTS

We now present our evaluation of finetuned state-of-the-art pre-trained language models on the ART
dataset, and several other baseline systems for both αNLI and αNLG. Since αNLI is framed as a
binary classification problem, we choose accuracy as our primary metric. For αNLG, we report
performance on automated metrics such as BLEU (Papineni et al., 2002), CIDEr (Vedantam et al.,
2015), METEOR (Banerjee & Lavie, 2005) and also report human evaluation results.

5.1 ABDUCTIVE NATURAL LANGUAGE INFERENCE

6Both crowdsourcing tasks are complex and require creative writing. Along with the ART dataset, we will
publicly release templates and the full set of instructions for all crowdsourcing tasks to facilitate future data
collection and research in this direction.
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Model GPT AF
Acc. (%)

ART
Acc. (%)

Random (2-way choice) 50.1 50.4
Majority (from dev set) 50.1 50.8
Infersent (Conneau et al., 2017) 50.9 50.8
ESIM+ELMo (Chen et al., 2017) 58.2 58.8
Finetuning Pre-trained LMs

GPT-ft 52.6 (0.9) 63.1 (0.5)

BERT-ft [hi Only] 55.9 (0.7) 59.5 (0.2)

BERT-ft [O1 Only] 63.9 (0.8) 63.5 (0.7)

BERT-ft [O2 Only] 68.1 (0.6) 66.6 (0.2)

BERT-ft [Linear Chain] 65.3 (1.4) 68.9 (0.5)

BERT-ft [Fully Connected] 72.0 (0.5) 68.6 (0.5)

Human Performance - 91.4

Table 1: Performance of baselines and finetuned-LM
approaches on the test set of ART. Test accuracy is re-
ported as the mean of five models trained with random
seeds, with the standard deviation in parenthesis.

Despite strong performance on several
other NLP benchmark datasets, the best
baseline model based on BERT achieves
an accuracy of just 68.9% on ART com-
pared to human performance of 91.4%.
The large gap between human perfor-
mance and that of the best system provides
significant scope for development of more
sophisticated abductive reasoning models.
Our experiments show that introducing the
additional independence assumptions de-
scribed in Section 3.1 over the fully con-
nected model tends to degrade system per-
formance (see Table 1) in general.

Human Performance We compute hu-
man performance using AMT. Each in-
stance (two observations and two hypothe-
sis choices) is shown to three workers who
were prompted to choose the more plausi-
ble hypothesis choice.7 We compute ma-
jority vote on the labels assigned which
leads to a human accuracy of 91.4% on the ART test set.

Baselines We include baselines that rely on simple features to verify that ART is not trivially
solvable due to noticeable annotation artifacts, observed in several crowdsourced datasets. The
accuracies of all simple baselines are close to chance-performance on the task – indicating that the
dataset is free of simple annotation artifacts.

A model for the related but distinct task of entailment NLI (e.g. SNLI) forms a natural baseline for
αNLI. We re-train the ESIM+ELMo (Chen et al., 2017; Peters et al., 2018) model as its performance
on entailment NLI (88.9%) is close to state-of-the-art models (excluding pre-trained language mod-
els). This model only achieves an accuracy of 58.8% highlighting that performing well on ART
requires models to go far beyond the linguistic notion of entailment.
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Figure 5: BERT learning curve on the dev set of ART.
For each point on the x-axis, we fine-tune BERT with
five random seeds. Human performance is 91.4%.

Pre-trained Language Models BERT
(Devlin et al., 2018) and GPT (Radford,
2018) have recently been shown to achieve
state-of-the-art results on several NLP
benchmarks (Wang et al., 2018). We fine-
tune both BERT-Large and GPT as sug-
gested in previous work and we present
each instance in their natural narrative or-
der. BERT-ft (fully connected) is the best
performing model achieving 68.9% accu-
racy, compared to GPT’s 63.1%.8 Our AF
approach was able to reduce BERT perfor-
mance from over 88% by 20 points.

Learning Curve and Dataset Size
While there is enough scope for consid-
erably scaling up the dataset based on
ROCStories, the learning curve in Figure
5 shows that the performance of the best
model plateaus after ∼10, 000 instances. In addition, there is still a wide gap (∼23%) between the
performance of the best model and human performance.

7Additional crowdsourcing details in the Appendix A.1
8The input format for the GPT model and BERT variants is described in the Appendix A.4.
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Model BLEU METEOR ROUGE CIDEr BERT-Score Human

GPT2-Fixed 0.0 9.29 9.99 3.34 36.69 -
O1-O2-Only 2.23 16.71 22.83 33.54 48.74 42.26
COMeT-Txt+GPT2 2.29 16.73 22.51 31.99 48.46 38.28
COMeT-Emb+GPT2 3.03 17.66 22.93 32.00 48.52 44.56

Human-written Hypotheses 8.25 26.71 30.40 53.56 53.30 96.03

Table 2: Performance of generative models on the test set of ART. All models except GPT2-Fixed
are finetuned on ART.

GPT Adversary Table 1 also includes results of our experiments where GPT was used as the
adversary. Notably, in this case, adversarially filtering the dataset brings down GPT performance
under 53%. On the other hand, the best BERT model, that encodes the fully connected bayesian net-
work performs significantly better than the BERT model that encodes the linear chain assumptions
– 72% compared to 65%. Therefore, we use the BERT fully connected model as the adversary in
ART. The gap between the linear chain and fully connected BERT models diminishes when BERT
is used as an adversary – in spite of being a more powerful model – which indicates that adversar-
ial filtering disproportionately impacts the model used as the adversary. However, the dataset also
becomes more difficult for the other models that were not used as adversaries. For example, before
any filtering, BERT scores 88% and OpenGPT gets 80%, which is much higher than either model
achieves in Table 1 when the other model is used for filtering. This result is a reasonable indicator,
albeit not a guarantee, that ART will remain challenging for new models released in the future.

5.2 ABDUCTIVE NATURAL LANGUAGE GENERATION

Generative Language Models As described in Equation 4, we train GPT2 conditioned on the
tokens of the two observations O1 and O2. Both observations are enclosed with field-specific tags.
ATOMIC (Sap et al., 2019), a repository of inferential if-then knowledge is a natural source of back-
ground commonsense required to reason about narrative contexts in ART. Yet, there is no straightfor-
ward way to include such knowledge into a neural model as ATOMIC’s nodes are not canonicalized
and are represented as short phrases of text. Thus, we rely on COMeT – a transformer model trained
on ATOMIC that generates nine commonsense inferences of events in natural language.9 Specifi-
cally, we experiment with two ways of integrating information from COMeT in GPT2: (i) as textual
phrases, and (ii) as embeddings.

Figure 3 shows how we integrate COMeT representations. Concretely, after the input tokens are em-
bedded by the word-embedding layer, we append eighteen (corresponding to nine relations for each
observation) embeddings to the sequence before passing through the layers of the Transformer ar-
chitecture. This allows the model to learn each token’s representation while attending to the COMeT
embeddings – effectively integrating background commonsense knowledge into a language model.10

Discussion Table 2 reports results on the αNLG task. Among automatic metrics, we report BLEU-
4 (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004), CIDEr (Vedan-
tam et al., 2015) and BERT-Score (Zhang et al., 2019) (with the bert-base-uncased model).
We establish human performance through crowdsourcing on AMT. Crowdworkers are shown pairs
of observations and a generated hypothesis and asked to label whether the hypothesis explains the
given observations. The last column reports the human evaluation score. The last row reports
the score of a held-out human-written hypothesis and serves as a ceiling for model performance.
Human-written hypotheses are found to be correct for 96% of instances, while our best genera-
tive models, even when enhanced with background commonsense knowledge, only achieve 45% –
indicating that the αNLG generation task is especially challenging for current state-of-the-art text
generators.

9Please see Appendix A.6 for a full list of the nine relations.
10We describe the format of input for each model in Appendix A.7.

7



Published as a conference paper at ICLR 2020

6 ANALYSIS

6.1 αNLI

Category Human
Accuracy

BERT
Accuracy

∆

All (1, 000) 91.4 68.8 22.6
Numerical (44) 88.6 56.8 21.8
Spatial (130) 91.5 65.4 26.1
Emotional (84) 86.9 72.6 14.3

Table 3: BERT’s performance and human evalua-
tion on categories for 1,000 instances from the test
set, based on commonsense reasoning domains
(Numerical, Spatial, Emotional). The number in
parenthesis indicates the size of the category.

Commonsense reasoning categories We in-
vestigate the categories of commonsense-based
abductive reasoning that are challenging for
current systems and the ones where the best
model over-performs. While there have been
previous attempts to categorize commonsense
knowledge required for entailment (LoBue &
Yates, 2011; Clark et al., 2007), crowdsourc-
ing this task at scale with high fidelity and high
agreement across annotators remains challeng-
ing. Instead, we aim to probe the model with
soft categories identified by matching lists of
category-specific keywords to the hypothesis
choices.

Table 3 shows the accuracy of the best model (BERT-ft) across various categories of commonsense
knowledge. BERT-ft significantly underperforms on instances involving Numerical (56.8%) and
Spatial (65.4%) commonsense. These two categories include reasoning about numerical quantities
and the spatial location of agents and objects, and highlight some of the limitations of the language
models. In contrast, it significantly overperforms on the Emotional category (72.6%) where the
hypotheses exhibit strong textual cues about emotions and sentiments.

Story
Transition

% of
Dataset

BERT-ft
Fully Connected

Acc. (%)

BERT-ft
Linear Chain

Acc. (%)

O1 6→h− 32.5 73.6 71.6
h− 6→O2 45.3 69.0 70.5
Plausible 22.2 62.5 58.5

All (1,000) 100.0 69.1 68.2

Table 4: Fraction of dataset for which a particular
transition in the story is broken for the negative
hypothesis, for 1,000 random instances from the
test set.

Implausible transitions A model for an in-
stance of the ART dataset should discard im-
plausible hypotheses in the context of the two
given observations. In narrative contexts, there
are three main reasons for an implausible hy-
pothesis to be labeled as such:

1. O1 6→h−: h− is unlikely to follow after the
first observation O1.

2. h− 6→O2: h− is plausible after O1 but un-
likely to precede the second observation O2.

3. Plausible: 〈O1, h−, O2〉 is a coherent narra-
tive and forms a plausible alternative, but it
is less plausible than 〈O1, h+, O2〉.

We analyze the prevalence of each of these reasons in ART. We design a crowdsourcing task in
which we show the implausible option along with the narrative context 〈O1, O2〉 and get labels
for which transition (O1 6→h−, h− 6→O2 or neither) in the narrative chain is broken. Table 4 shows
the proportion of each category from a subset of 1, 000 instances from the test set. While h− 6→O2

accounts for almost half of the implausible transitions in ART, all three categories are substantially
present in the dataset. BERT performance on each of these categories indicates that the model
finds it particularly hard when the narrative created by the incorrect hypothesis is plausible, but
less plausible than the correct hypothesis. On that subset of the test set, the fully connected model
performs better than the linear chain model where it is important to consider both observations
jointly to arrive at the more likely hypothesis.

6.2 αNLG

Figure 6 shows some examples of generations from the trained models compared to human-written
generations. The example on the left is an example of an instance that only humans could get
correct, while for the one on the right, COMeT-Emb+GPT2also generates the correct explanation
for the observations.
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O1 
Larry's yard was covered in dead leaves.

O2

Larry decided to give up for the day and went back inside.

O1 
Junior is the name of our 20+ year old turtle.

O2

Junior is still going strong.

by accident, he spent a whole year living in his mother's basement, he … GPT2   actually, that turtle can't bite you

Larry wondered what he could do with the leaves. O1-O2-Only   Junior made a giant jump rope.

Larry decided to pull the dirt off his lawn.
  COMeT-
Txt+GPT2

  Junior will have surgery to heal and her internal organs are  
  broken.

Larry threw the leaves out.
COMeT-

Emb+GPT2
  Junior has been swimming in the pool with her friends.

He spent hours trying to clean the yard.  Human-written   We took Junior to the vet to check on him.

Generated Hypotheses

Figure 6: Examples of generated hypotheses from different models and human-written hypothesis
for 2 instances from ART.

7 TRANSFER LEARNING FROM ART

ART contains a large number of questions for the novel abductive reasoning task. In addition to serv-
ing as a benchmark, we investigate if ART can be used as a resource to boost performance on other
commonsense tasks. We apply transfer learning by first training a model on ART, and subsequently
training on four target datasets – WinoGrande Sakaguchi et al. (2020), WSC Levesque et al. (2011),
DPR Rahman & Ng (2012) and HellaSwag Zellers et al. (2019). We show that compared to a model
that is only trained on the target dataset, a model that is sequentially trained on ART first and then
on the target dataset can perform better. In particular, pre-training on ART consistently improves
performance on related datasets when they have relatively few training examples.

Dataset BERT-ft(D) BERT-ft(ART)→
BERT-ft(D)

WinoGrande
Sakaguchi et al. (2020) 65.8% 67.2%

WSC
Levesque et al. (2011) 70.0% 74.0%

DPR
Rahman & Ng (2012) 72.5% 86.0%

Hellaswag
Zellers et al. (2019) 46.7% 46.1%

Table 5: Transfer Learning from ART

On the other hand, for target datasets with large
amounts of training data, pre-training on ART
does not provide a significant improvement.

8 RELATED WORK

Cloze-Style Task vs. Abductive Reasoning
Since abduction is fundamentally concerned
with plausible chains of cause-and-effect, our
work draws inspiration from previous works
that deal with narratives such as script learning
(Schank & Abelson, 1975) and the narrative cloze test (Chambers & Jurafsky, 2009; Jans et al.,
2012; Pichotta & Mooney, 2014; Rudinger et al., 2015). Rather than learning prototypical scripts or
narrative chains, we instead reason about the most plausible events conditioned on observations. We
make use of the ROCStories dataset (Mostafazadeh et al., 2016), which was specifically designed for
the narrative cloze task. But, instead of reasoning about plausible event sequences, our task requires
reasoning about plausible explanations for narrative omissions.

Entailment vs. Abductive Reasoning The formulation of αNLI is closely related to entailment
NLI, but there are two critical distinctions that make abductive reasoning uniquely challenging. First,
abduction requires reasoning about commonsense implications of observations (e.g., if we observe
that the “grass is wet”, a likely hypothesis is that “it rained earlier”) which go beyond the linguistic
notion of entailment (also noted by Josephson (2000)). Second, abduction requires non-monotonic
reasoning about a set of commonsense implications collectively, to check the potential contradictions
against multiple observations and to compare the level of plausibility of different hypotheses. This
makes abductive reasoning distinctly challenging compared to other forms of reasoning such as
induction and deduction (Shank, 1998). Perhaps more importantly, abduction is closely related to
the kind of reasoning humans perform in everyday situations, where information is incomplete and
definite inferences cannot be made.
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Generative Language Modeling Recent advancements in the development of large-scale pre-
trained language models (Radford, 2018; Devlin et al., 2018; Radford et al., 2019) have improved
the quality and coherence of generated language. Although these models have shown to gener-
ate reasonably coherent text when condition on a sequence of text, our experiments highlight the
limitations of these models to 1) generate language non-monotonically and 2) adhere to common-
sense knowledge. We attempt to overcome these limitations with the incorporation of a generative
commonsense model during hypothesis generation.

Related Datasets Our new resource ART complements ongoing efforts in building resources for
natural language inference (Dagan et al., 2006; MacCartney & Manning, 2009; Bowman et al.,
2015; Williams et al., 2018a; Camburu et al., 2018). Existing datasets have mostly focused on
textual entailment in a deductive reasoning set-up (Bowman et al., 2015; Williams et al., 2018a)
and making inferences about plausible events (Maslan et al., 2015; Zhang et al., 2017). In their
typical setting, these datasets require a system to deduce the logically entailed consequences of a
given premise. In contrast, the nature of abduction requires the use of commonsense reasoning
capabilities, with less focus on lexical entailment. While abductive reasoning has been applied
to entailment datasets (Raina et al., 2005), they have been applied in a logical theorem-proving
framework as an intermediate step to perform textual entailment – a fundamentally different task
than αNLI.

9 CONCLUSION

We present the first study that investigates the viability of language-based abductive reasoning. We
conceptualize and introduce Abductive Natural Language Inference (αNLI) – a novel task focused
on abductive reasoning in narrative contexts. The task is formulated as a multiple-choice question-
answering problem. We also introduce Abductive Natural Language Generation (αNLG) – a novel
task that requires machines to generate plausible hypotheses for given observations. To support these
tasks, we create and introduce a new challenge dataset, ART, which consists of 20,000 commonsense
narratives accompanied with over 200,000 explanatory hypotheses. In our experiments, we establish
comprehensive baseline performance on this new task based on state-of-the-art NLI and language
models, which leads to 68.9% accuracy with a considerable gap with human performance (91.4%).
The αNLG task is significantly harder – while humans can write a valid explanation 96% of times,
the best generator models can only achieve 45%. Our analysis leads to new insights into the types of
reasoning that deep pre-trained language models fail to perform – despite their strong performance
on the closely related but different task of entailment NLI – pointing to interesting avenues for future
research. We hope that ART will serve as a challenging benchmark for future research in language-
based abductive reasoning and the αNLI and αNLG tasks will encourage representation learning
that enables complex reasoning capabilities in AI systems.
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A APPENDICES

A.1 DATA COLLECTION DETAILS

We describe the crowdsourcing details of our data collection method.

Task 1 - Plausible Hypothesis Options In this task, participants were presented an incomplete
three-part story, which consisted of the first observation (O1) and the second observation (O2) of
the story. They were then asked to complete the story by writing a probable middle sentence that
explains why the second observation should follow after the first one. We instructed participants to
make sure that the plausible middle sentence (1) is short (fewer than 10 words) and (2) simple as if
narrating to a child, (3) avoids introducing any extraneous information, and (4) uses names instead
of pronouns (e.g., he/she) wherever possible.

All participants were required to meet the following qualification requirements: (1) their location is
in the US, (2) HIT approval rate is greater than 95(%), and (3) Number of HITs approved is greater
than 5,000. The reward of this task was set to be $0.07 per question ($14/hour in average), and each
HIT was assigned to five different workers (i.e., 5-way redundancy).

Task 2 - Implausible Hypothesis Options In this task, participants were presented a three-part
story, which consisted of the first observation (O1), a middle sentence (h+) collected in Task 1, and
the second observation (O2) of the story. They were then asked to rewrite the middle sentence (h+)
with minimal changes, so that the story becomes unlikely, implausible or inconsistent (h−). We
asked participants to add or remove at most four words to h+, while ensuring that the new middle
sentence is grammatical. In addition, we asked them to stick to the context in the given story. For
example, if the story talks about “doctors”, they are welcome to talk about “health” or “diagnosis”,
but not mention “aliens”. Finally, we also asked workers to verify if the given middle (h+) makes a
plausible story, in order to confirm the plausibility of h+collected in Task 1.

With respect to this task’s qualification, participants were required to fulfill the following require-
ments: (1) their location is the US or Canada, (2) HIT approval rate is greater than or equal to 99(%),
and (3) number of HITs approved is greater than or equal to 10, 000. Participants were paid $0.1
per question ($14/hour in average), and each HIT was assigned to three different participants (i.e.,
3-way redundancy).

Task 3 - αNLI Human Performance Human performance was evaluated by asking participants
to answer the αNLI questions. Given a narrative context 〈O1, O2〉 and two hypotheses, they were
asked to choose the more plausible hypothesis. They were also allowed to choose “None of the
above“ when neither hypothesis was deemed plausible.

We asked each question to seven participants with the following qualification requirements: (1) their
location is either in the US, UK, or Canada, (2) HIT approval rate is greater than 98(%), (3) Number
of HITs approved is greater than 10, 000. The reward was set to $0.05 per HIT. We took the majority
vote among the seven participants for every question to compute human performance.

A.2 ART DATA STATISTICS

Table 6 shows some statistics of the ART dataset.

A.3 FINE-TUNING BERT

We fine-tuned the BERT model using a grid search with the following set of hyper-parameters:

• batch size: {3, 4, 8}
• number of epochs: {3, 4, 10}
• learning rate: {1e-5, 2e-5, 3e-5, 5e-5}

The warmup proportion was set to 0.2, and cross-entropy was used for computing the loss. The best
performance was obtained with a batch size of 4, learning rate of 5e-5, and number of epochs equal
to 10. Table 7 describes the input format for GPT and BERT (and its variants).
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Train Dev Test

Total unique occurrences
Contexts 〈O1, O2〉 17,801 1,532 3,059
Plausible hyp. h+ 72,046 1,532 3,059
Implausible hyp. h− 166,820 1,532 3,059

Avg. size per context
Plausible hyp. h+ 4.05 1 1
Implausible hyp. h− 9.37 1 1

Avg. word length
Plausible hyp. h+ 8.34 8.62 8.54
Implausible hyp. h− 8.28 8.55 8.53
First observation O1 8.09 8.07 8.17
Second observation O2 9.29 9.3 9.31

Table 6: Some statistics summarizing the ART dataset. The train set includes all plausible and im-
plausible hypotheses collected via crowdsourcing, while the dev and test sets include the hypotheses
selected through the Adversarial Filtering algorithm.

A.4 BASELINES

The SVM classifier is trained on simple features like word length, overlap and sentiment features to
select one of the two hypothesis choices. The bag-of-words baseline computes the average of GloVe
(Pennington et al., 2014) embeddings for words in each sentence to form sentence embeddings. The
sentence embeddings in a story (two observations and a hypothesis option) are concatenated and
passed through fully-connected layers to produce a score for each hypothesis. The accuracies of
both baselines are close to 50% (SVM: 50.6; BOW: 50.5).

Specifically, we train an SVM classifier and a bag-of-words model using GLoVE embeddings. Both
models achieve accuracies close to 50%. An Infersent (Conneau et al., 2017) baseline that uses
sentences embedded by max-pooling over Bi-LSTM token representations achieves only 50.8%
accuracy.

Model Input Format

GPT [START] O1 + hi [SEP] O2 [SEP]

BERT-ft [Hypothesis Only] [CLS] hi [SEP]

BERT-ft [First Observation Only] [CLS] O1 [SEP] hi [SEP]

BERT-ft [Second Observation Only] [CLS] hi [SEP] O2 [SEP]

BERT-ft [Linear Chain] [CLS] O1 [SEP] hi [SEP] ; [CLS] hi [SEP] O2 [SEP]

BERT-ft [Fully Connected] [CLS] O1 + O2 [SEP] hi [SEP]

Table 7: Input formats for GPT and BERT fine-tuning.

A.5 ADVERSARIAL FILTERING OF HYPOTHESES CHOICES

Given an observation pair and sets of plausible and implausible hypotheses 〈O1, O2,H+,H−〉, our
adversarial filtering algorithm selects one plausible and one implausible hypothesis 〈O1, O2, h+,
h− 〉 such that h+ and h− are hard to distinguish between. We make three key improvements over
the previously proposed Adversarial Filtering (AF) approach in Zellers et al. (2018). First, Instead
of a single positive sample, we exploit a poolH+ of positive samples to choose from (i.e. plausible
hypotheses). Second, Instead of machine generated distractors, the pool H− of negative samples
(i.e. implausible hypotheses) is human-generated. Thus, the distractors share stylistic features of the
positive samples as well as that of the context (i.e. observations O1 and O2) – making the negative
samples harder to distinguish from positive samples. Finally, We use BERT (Devlin et al., 2018) as
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the adversary and introduce a temperature parameter that controls the maximum number of instances
that can be modified in each iteration of AF. In later iterations, fewer instances get modified resulting
in a smoother convergence of the AF algorithm (described in more detail below).

Algorithm 1 provides a formal description of our approach. In each iteration i, we train an adver-
sarial model Mi on a random subset Ti of the data and update the validation set Vi to make it more
challenging for Mi. For a pair (h+

k , h
−
k ) of plausible and implausible hypotheses for an instance k,

we denote δ = ∆Mi
(h+
k , h

−
k ) the difference in the model evaluation of h+

k and h−k . A positive value
of δ indicates that the model Mi favors the plausible hypothesis h+

k over the implausible one h−k .
With probability ti, we update instance k that Mi gets correct with a pair (h+, h−) ∈ H+

k × H
−
k

of hypotheses that reduces the value of δ, where H+
k (resp. H−k ) is the pool of plausible (resp.

implausible) hypotheses for instance k .

We ran AF for 50 iterations and the temperature ti follows a sigmoid function, parameterized by the
iteration number, between ts = 1.0 and te = 0.2. Our final dataset, ART, is generated using BERT
as the adversary in Algorithm 1.

Algorithm 1: Dual Adversarial Filtering
input : dataset D0, plausible & implausible hypothesis sets (H+,H−), number of iterations n,

initial & final temperatures (ts, te)
output: dataset Dn

1 for iteration i : 0..n− 1 do
2 ti = te + ts−te

1+e0.3(i−
3n
4

)

3 Randomly partition Di into (Ti,Vi).
4 Train model Mi on Ti.
5 Si = ∅, the selected hypotheses for Vi.
6 for (h+

k , h
−
k ) ∈ Vi do

7 Pick r uniformly at random in [0, 1].
8 if r > ti or ∆Mi

(h+
k , h

−
k ) < 0 then

9 Add (h+
k , h

−
k ) to Si.

10 else
11 Pick (h+, h−) ∈ H+

k ×H
−
k s.t. ∆Mi

(h+, h−) < ∆Mi
(h+
k , h

−
k )

12 Add (h+, h−) to Si.
13 end
14 end
15 Di+1 = Ti ∪ Si
16 end

A.6 ATOMIC RELATIONS

ATOMIC (Sap et al., 2019) represents commonsense knowledge as a graph with events are nodes
and the following nine relations as edges:

1. xIntent: Why does X cause an event?

2. xNeed: What does X need to do before the event?

3. xAttr: How would X be described?

4. xEffect: What effects does the event have on X?

5. xWant: What would X likely want to do after the event?

6. xReaction: How does X feel after the event?

7. oReact: How do others’ feel after the event?

8. oWant: What would others likely want to do after the event?

9. oEffect: What effects does the event have on others?
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Model Input Format

GPT2-Fixed w1
1 . . . w

1
nw

2
1 . . . w

2
n Because,

O1-O2-Only 〈o1〉w1
1 . . . w

1
n〈/o1〉〈o2〉w2

1 . . . w
2
n〈/o2〉〈h〉

COMeT-Txt+GPT2 〈p11〉T 1
1 . . . T

1
9 〈p19〉〈p21〉T 2

1 . . . T
2
9 〈p29〉〈o1〉w1

1 . . . w
1
n〈/o1〉〈o2〉w2

1 . . . w
2
n〈/o2〉〈h〉

COMeT-Emb+GPT2 c11 . . . c
1
9; c

2
1 . . . c

2
9〈o1〉w1

1 . . . w
1
n〈/o1〉〈o2〉w2

1 . . . w
2
n〈/o2〉〈h〉

Table 8: Input format used to training and generated text from various GPT2 based models. cji
refers to the COMeTembeddings obtained using a separate transformer model for relation i and
observation j. Similarly, T ji is the textual phrase for relation i, observation j. Where appropriate,
field specific start and end-tags are added to the sequence of inputs.

A.7 GENERATION MODELS INPUT FORMAT

Table 8 describes the format of input to each variation of the generative model evaluated.
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